Prompt Engineering

Presented by: Oliver Piter

What is prompt engineering?

* The process of crafting prompts to get the right output from a
model.

* You can improve the output by:
* Giving more precise instructions
* Examples
* Necessary context information
* Etc.

Prompt Engineering != Prompt Tuning

What is the difference?

Prompt Engineering Prompt Tuning
* Prompt engineering is more * Prompt tuning requires training
manual and creative. a machine learning model that

adjusts the prompts
automatically.

When to prompt engineer?

When to prompt engineer?

* Prompt engineering is far faster than other methods of model
behavior control, such as finetuning.

* Aspects to consider:
* Resources (HW, people, money, time, data...)
* Models are being updated all the time
* Preserving general knowledge
* Transparency

Use clear, direct and detailed
prompts

Use clear, direct and detailed prompts

* The model lacks context on your norms, standards, styles, etc.

* LLMs usually benefit from more context. Examples:

* What the task will be used for.
* What s the target audience.
* The end goal of the task.

* If there are chronological steps to solve the problem, write them in
numbered list.

Use examples: multishot prompting

Multishot prompting

* Pros:
* Reducing misinterpretation of instructions.
* Enforcement of uniform structure and style.
* Boosting the ability to handle complex tasks.

* Crafting good examples involves:
* Choosing relevant examples.

* Covering edge cases and picking examples covering broad range of
challanges.

e Clarity: state where the examples are located in the prompt.

<title>Use XML tags</title>

XML tags

* Prompts can get quite complex and need to be separated into
pieces.

« XML tags help to:
* Clearly separate parts of the prompt.
* Easily find information in the prompt.
* Make the output of the model more parseable.

Chain of Thought

Chain of Thought (CoT)

* Technique that encourages models to break down problems and
solve them step-by-step.

* Pros:
* Reduces errors.
* More cohesive responses.
e Can spot error more easily.

* Cons:
* Increased output length = more cost and latency.
* Not always necessary.

Chain of Thought (CoT)

e Start with "Think step-by-step". But lack guidance on how to think.
* Guided prompt: give the model points to think about.

"Solve 2+2*5. Break the computation into steps by priority and solve
each step according to priority."

 Good butitis hard to separate thinking and answer.

* Structured prompt: "... according to priority. Think about a
solution for each step in <thinking> tags."

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

J

A: The answer is 27. x

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

Ldo they have?

A:

answer is 9. 4/

Tree of Thought

Input: 491013

10-4=6 | 4+9=13

left6913) | (lefc101313) |

.....

13-6=7 13-9=4 ...
(lef:79) left: 4 6)

./T\.

4+6=10 4'6=24

(left 10) eft 24

Shunyu Yao et al.

(a) Propose Prompt

Thought Generation

{one example}
Input 491013
Possible next steps:

4+9=13(lefc 1013 13)
10-4=6(lefc 6913)

{..more lines...}

(b) Value Prompt

Evaluate if given numbers can
reach 24 (sure/likely/impossible)
1014:10 +14 = 24. sure

{more examples}

101313

Thought Evaluation

~

A

(13-10)*13=3*13=39

10 + 13 + 13 = 36 There is no way
to obtain 24 with these big
numbers. impossible

Graph of Thought

-c"rhn‘;l.g(:t Multiple CoTs (CoT-SC) Hll Graph of Thoughts (GoT) [This work]
(CoT) :)
Backtracking (] Refining
Il'lpl.lt Branching out from a chain . Input
from a chain] A
v ' 3 :
]
Sl " ‘ "."' : Backtracking
(]
A]
A A ¥ i i N\ ?
]
Thoughts: ‘ I Y. (]
Unscored ’ * * :‘ \-.~ : ?
Positive p ? ? q :) ")
Sote ‘ . Aggregating ggregatng
@ Nesative ’ chains thoughts
TELAS Output Abandon a chain Olltpl]t Key n.“clo,T-SC)' M
Dependencies oo : l(ey novelty (beyond ToT): Output
between thoughts Key novelty Selecting new based Intermediate . Arbitrary s‘.aponsh (h:“d thought
i Key novelty: (beyond &Hﬂdple a chaln with mﬂa arbitrary l;(;ggslllzr:;e s "lm‘ minm . newwonem,
Abandon thought mlntumedhtel) Ilnmdenpmm de'%‘ chains | the best score 1t Fiithe e:mdlphtng bly] looping over a thought to
N Bk within a chain of thoughts backtracking from it : refine it)

Role prompting

Role prompting

* Use system prompt to give the model a role.
* Harder to do on models without system prompt.

* Pros:
* Constraining the model in a specific domain enhances accuracy.
* You can modify the output "tone" of the model.

* System prompt usually starts with "You are..."

 Example: "You are the General Counsel of a Fortune 500 tech
company."

Prefilling responses

Prefilling responses

* Sometimes models do not adhere to a specified format or you
want to enforce a format.

* JSON - start with "{"
* XML -"<?xmlversion="1.0" encoding="UTF-8"?>"

Prompt chaining

Prompt chaining

* When solving complex tasks divisible into distinct steps, prompt
chaining reduces the thinking overhead of the model.

* ltis a goodideato useitin combination with XML tags and Col.

Complex Prompt Simple Prompt

Consider the given text in Spanish. Read the given
Translate it into English. Find all the Spanish text. Translate them
statistics and facts used in this text into Spanish
and list them as bullet points. ¢ language.
Translate them again into Spanish.
Translate the text T
into English

Create a bullet
language.
guag point list of all

¢ these facts. n
|

Fetch the statistics
and facts from the

text.
3

Handling too long prompts

Handling too long prompts

* Prompt chaining helps with that.

* For dialogue systems, summarize the previous conversation at
some point.

* Summarize long documents piecewise and create a summary of
summaries.

* For refering to things previously mentioned, keep running
summary.

References

« Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xig, Ed Chi,
Quoc Le, & Denny Zhou. (2023). Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models.

« Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, & Karthik
Narasimhan. (2023). Tree of Thoughts: Deliberate Problem Solving with Large Language
Models.

« Besta, M, Blach, N., Kubicek, A., Gerstenberger, R.,, Podstawski, M., Gianinazzi, L., Gajda, J.,
Lehmann, T, Niewiadomski, H.,, Nyczyk, P., & Hoefler, T. (2024). Graph of Thoughts: Solving
Elaborate Problems with Large Language Models. Proceedings of the AAAI Conference
on Artificial Intelligence, 38(16), 17682-17690.

* https://wandb.ai/sauravmaheshkar/prompting-techniques/reports/Chain-of-thought-tree-of-thought-
and-graph-of-thought-Prompting-techniques-explained---Vmlldzo4MzQwNjMx

e https://www.ibm.com/think/topics/prompt-chaining

